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ABSTRACT

Automatically generated malware is a significant problem for com-
puter users. Analysts are able to manually investigate a small number
of unknown files, but the best large-scale defense for detecting mal-
ware is automated malware classification. Malware classifiers often
use sparse binary features, and the number of potential features can
be on the order of tens or hundreds of millions. Feature selection
reduces the number of features to a manageable number for train-
ing simpler algorithms such as logistic regression, but this number is
still too large for more complex algorithms such as neural networks.
To overcome this problem, we used random projections to further
reduce the dimensionality of the original input space. Using this ar-
chitecture, we train several very large-scale neural network systems
with over 2.6 million labeled samples thereby achieving classifica-
tion results with a two-class error rate of 0.49% for a single neural
network and 0.42% for an ensemble of neural networks.

Index Terms— Malware Classification, Random Projections,
Neural Network

1. INTRODUCTION

In this paper, we consider the problem of automated malware detec-
tion. Computer users often download malware (i.e. malicious soft-
ware) to their computer by unknowingly visiting a malicious web-
page hosting a drive-by download attack, clicking on a malicious
link included in email, opening an attachment which includes an ex-
ploit, or by inserting a USB thumb drive containing malware into
their computer. The amount of new malware is growing at a stag-
gering rate. Microsoft receives over 150 thousand new, unknown
files each day to be analyzed. Given the enormous volume of un-
known files, manual inspection by analysts is impossible. Malware
authors use automated methods such as polymorphism, where a pro-
gram generates a unique, new instance of a malware family for each
victim, to create new malware. To combat this threat, anti-virus com-
panies must utilize signal processing and machine learning methods
to automatically detect new instances of malware.

The goal of a fully automated malware classification system is to
operate at an extremely low false positive rate (e.g. < 0.01%) while
providing a reasonably low false negative rate (e.g. < 5%). The
cost of a false positive is higher since it may result in an important
system file being deleted from the computer thereby preventing the
computer from booting correctly. A secondary goal is, provided that
the system predicts a file to be malicious, does it belong to a known
malware family? Being able to correctly predict the family allows an
unknown file to be assigned to the correct expert for manual investi-
gation. If necessary, a file predicted to be in the Rbot family can be

assigned to an analyst with expertise in analyzing instances of Rbot
for further investigation. In the hope of building a classifier capable
of addressing these challenges, we construct a dataset of 2.6 million
labeled training examples belonging to 134 malware families as well
as a benign file class and a generic malware class.

Given the severity of the problem, malware classification is an
active research area [1], but the escalating threat indicates the prob-
lem is clearly not solved. Achieving very low false positive rates is
extremely challenging and having access to a very large number of
labeled malware and benign examples is required to even begin to
obtain reasonable accuracies. Most earlier research has been done
on relatively small malware sample collections [2, 3] limiting the
accuracy of these systems.

Malware classification systems are often based on sparse, bi-
nary feature sets. In our work, we also employ sparse binary fea-
tures based on file strings, application programming interface (API)
tri-grams, and API call plus parameter value. To achieve good classi-
fication accuracy, we use over 179 thousand sparse, binary features
generated from feature selection. Logistic regression on all of the
features demonstrates reasonable accuracies at large-scale. How-
ever, the error rates are still not small enough for fully automated
malware classification. In addition, the high-dimensionality of the
input space prevents more complicated algorithms from being uti-
lized. To address this problem, we propose a novel malware classifi-
cation architecture which first projects the high-dimensional feature
vector down to a much lower-dimensional subspace. Doing so al-
lows us to train the system with neural networks with one or more
hidden layers reducing the two-class error rate by more than 43%
compared to logistic regression trained with all of the features. In
our work, we use random projections [4, 5], but also investigate us-
ing principal component analysis (PCA) to reduce the dimension-
ality of the input vector. We also investigate using pre-training, a
method often used in deep learning architectures, to solve this prob-
lem, but we found that the results were slightly worse than standard
neural network topologies trained with back-propagation. This paper
makes the following contributions:
• A large-scale system to classify unknown files with random

projections and neural networks is proposed and imple-
mented, and the results are presented.

• Random projections are used to reduce the dimensionality of
the input space by a factor of 45 allowing a neural network to
be trained on the high-dimensional input data.

• We investigate the number of random projections, hidden lay-
ers, and hidden units required to achieve good performance.
We also compare the performance of logistic regression and
neural networks for the task of multi-class malware classifi-
cation.
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Fig. 1. System Diagram for the Malware Classifier.

2. SYSTEM

This section discusses the components of the proposed malware clas-
sification system illustrated in Figure 1. We first construct a labeled
dataset from features automatically generated by a production anti-
malware engine. After initial feature selection to reduce the dimen-
sionality of the input space, we next use random projections to fur-
ther reduce the input dimensionality while retaining the highly dis-
criminative information about the input identified by feature selec-
tion. Finally, we train several models including non-linear neural
networks and linear logistic regression classifiers to classify the un-
known files.

DataSet: To construct the labeled training dataset, we first ob-
tain over 2.6 million files, 1,843,359 of which are malicious and
817,485 of which are benign. The files are mostly labeled manu-
ally by analysts. We also include benign files in the training set that
have been collected from reputable sources (e.g. Adobe Acrobat
Reader). Microsoft receives unknown files which are potentially ma-
licious from many different sources including other anti-virus ven-
dors, security organizations (e.g. CERT), product support, and by
requesting samples from users’ machines which have attempted to
download or install unknown files. Each of the malicious files is
also assigned to a particular malware family. We randomly selected
a set of files from 134 malware families determined by analysts to
be important to identify explicitly. All malware samples belonging
to malware families not in the set are included in a generic malware
class, and all samples of legitimate software are assigned to a benign
class.

Features: To analyze unknown malware, we modified Mi-
crosoft’s production anti-malware engine which, as part of the
analysis process, scans each unknown file in a lightweight virtual
machine. This engine is used in all of the Microsoft anti-malware
products such as Microsoft Security Essentials and Forefront End-
point Protection. As part of this process, we extract three types of
features including null-terminated patterns observed in the process’
memory, tri-grams of system API calls, and distinct combinations
of a single system API call and one input parameter. Most of the
time, the null-terminated patterns correspond to system strings used
to create the unknown file. The API tri-gram and API parameter
features are used to analyze the dynamic behavior of the unknown
file [6, 7]. The API tri-gram features consist of three consecutive
system API calls. The API parameter features identify unique pa-
rameter values corresponding to different system API calls which
can be used to identify individual families of malware. Since the
raw data is generated by the production anti-malware engine, we use
attributes which can be efficiently in extracted real-time.

Enumerating all of the distinct combinations of the three at-
tribute sets yields over 50 million possible features. In order to re-
duce the input space to a reasonable set of features which can be
classified by standard supervised learning techniques, we next per-
form feature selection using mutual information [8]. Feature selec-
tion generated over 179 thousand sparse binary features that best
discriminate each class (e.g. malware family, malware, benign) from
every other class in our dataset. Initially, we specified 3000 features

to be selected from each input family and 120,000 features from the
two generic classes (i.e. malware, benign). Eliminating common
features resulted in the final 179 thousand selected features.

Random projections: Even after feature selection, the input di-
mensionality is still quite large, although there is a lot of sparsity.
Naive neural net training on such high dimensional input is too ex-
pensive. To make the problem more manageable, we used the very
sparse random projections technique described in [4, 5]. We project
each input vector into a much lower dimensional space (a few thou-
sand dimensions) using a sparse projection matrix R with entries
sampled iid from a distribution over {0, 1,−1}. Entries of 1 and -1
are equiprobable and P (Rij = 0) = 1− 1√

d
, where d is the original

input dimensionality. Another way to view the random projection
in the context of neural network training is that the random projec-
tion step forms a layer with linear hidden units in which the weight
matrix is not learned and is instead simply set to R.

Classifiers: We use two classification techniques to attack the
malware detection problem in this paper: logistic regression and
neural networks. We briefly describe these techniques here.

Logistic regression: We have explored two versions of a logistic
regression classifier, with and without the use of the random projec-
tion just described. The parameters of both versions are trained with
the standard stochastic gradient descent (SGD) optimization method.
Logistic regression is a linear classifier and thus incapable of learn-
ing certain functions. We use multinomial logistic regression to han-
dle multiclass classification, or a “softmax” output layer in neural
network parlance. Although with a large number of inputs linear
classifiers can be quite powerful, for difficult classification problems
such as malware classification we expert there to be useful nonlinear
relationships in the data. We would like to examine whether using
nonlinear adaptive features can improve upon the classification accu-
racy of logistic regression. One common technique of learning non-
linear adaptive features is a feedforward neural network, whose final
output layer is a logistic regression classifier (or “softmax” layer).
We describe the neural network classifier below.

Neural Networks: The neural network classifier with random
projections learns a non-linear, multiclass model given by the ar-
chitecture in Figure 2. The random projections first reduce the di-
mensionality of the input vector from 179 thousand features to 4000
features. This lower-dimensional data then serves as input to the
neural network. The top layer then performs a softmax classification
to produce the final 136 class membership probabilities representing
the malware families and the generic malware and benign classes.
Essentially, a neural network is similar to logistic regression with
learned intermediate representations of the input. The neural net-
work implements a function from an input vector y0 to an output
vector yL using a sequence of “layers”. Since only the first and last
layers are ever observed, the intermediate layers are “hidden layers”.
For each layer, yi+1 = fi(Wiyi+bi) where yi is the “activation” of
the ith layer. We optimize the weight matrices Wi and bias vectors
bi to minimize the error on the training set.

Deep models (e.g. neural nets with many hidden layers) learn
multiple levels of representations of their input. Deep architectures
are compositional and hierarchical. The best model depth depends
on the problem and the training algorithm which is why it is essential
to experiment with more than one hidden layer. Even if accuracy
gains with additional layers are not possible for a particular problem,
since deep architectures can trade breadth for depth and vice versa,
a more efficiently parameterized solution may be possible.
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Fig. 2. Proposed Neural Network Architecture for Malware Classi-
fication Training

3. EXPERIMENTAL RESULTS

We explored a large variety of classifier configurations in order to an-
alyze the effect of different choices of random projection dimensions
and other neural network hyper-parameters. The results in Table 1
summarize the performance of the best configurations on a sepa-
rate, held out test set of over 1.1 million labeled file samples. Given
the large number of examples in the training and test sets, we use
a held-out test set instead of cross-validation in order to sweep the
parameter space. For training, 10% of the 2.6 million examples were
used for validation and the systems were trained with 40 epochs. The
mini-batch size for the results in Table 1 is 256 samples. The size
for all hidden layers for the best one-, two-, and three-hidden layer
neural networks are 1536, 2048, 1024, respectively. In the neural
network results, we used momentum for training with a value of 0.9,
and the learning rate was set to 0.03. The number of random pro-
jection is set to 4000 which consistently performed well. The “Test
Error” provides the total error for all classes where misclassifying a
family is considered to be an error. For the two-class error, an exam-
ple is only selected to be an error if the file was labeled as some form
of malware and was predicted to be benign, or vice versa. Columns
3 and 4 provide the False Positive Rate (FPR) and False Negative
Rate (FNR). The last column is the training time in minutes using a
C2075 NVIDIA GPU.

Seven different algorithms are considered in Table 1. Logistic
Regression All Features trains a simple, softmax logistic regression
model using all of the input features without performing random pro-
jections or using any hidden layers. The second algorithm, Logistic
Regression Random Projections, trains the system in Figure 2 with-
out any hidden layers. It does include random projections of size
4000 and the softmax layer. Rows 3, 5, and 7 implement the archi-
tecture in Figure 2 exactly with one, two, and three hidden layers,
respectively. Rows 4 and 6 implement the one- and two-layer neu-
ral networks, but also include an additional pre-training stage often
used in deep learning architectures which attempts to initialize the
hidden layer weights before performing the standard neural network
back-propagation training with stochastic gradient descent in order
to better learn the true underlying function. In our work, we imple-
mented the pre-training using a Gaussian-Bernoulli restricted Boltz-
mann machine (RBM), since after the random projection step the
input is no longer binary.

From Table 1, we see that the one-layer net without pre-training
offered the best two-class test error rate, but the test errors for
the one-layer net with pre-training and two-layer net without pre-
training are not statistically worse. The best three-layer neural

Method Test Test Two- FPR FNR Training
Error Class Err Time (min)

Logistic Regression 11.7% 0.86% 1.49% 0.60% 1872
All Features
Logistic Regression 12.37% 1.27% 2.41% 0.80% 105.7
Random Projections
One-Layer 9.53% 0.49% 0.83% 0.35% 167.1
Neural Network
without Pre-training
One-Layer 9.76% 0.50% 0.90% 0.34% 287.0
Neural Network
with Pre-training
Two-Layer 9.55% 0.50% 0.85% 0.35% 244.0
Neural Network
without Pre-training
Two-Layer 9.83% 0.54% 0.98% 0.36% 402.3
Neural Network
with Pre-training
Three-Layer 9.74% 0.51% 0.87% 0.36% 215.0
Neural Network
without Pre-training

Table 1. Best Results for Different Malware Classification Algo-
rithms.

network performed slightly worse than both the one- and two-layer
networks. Clearly adding more hidden layers does not help with this
problem. With the exception of the FNR for the one-layer neural
network with pre-training, all error metrics are slightly worse for
the pre-trained nets compared to the versions without pre-training.
In this case, pre-training did not provide any gains for models with
1-2 relatively wide hidden layers. Also, doing pre-training after
the random projections is not something that we would expect to
be helpful since it requires using Gaussian-Bernoulli RBMs which
are more unwieldy and might incorrectly learn artificial correla-
tions introduced by the feature mixing of the random projections.
The test error (i.e. the malware family error rate) is significantly
worse than the two-class error rate for malware versus benign files.
The reason is because many times separate malware families were
derived from the same original code and the malware classifier mis-
predicts one family for the other. In addition to the results in Table 1,
we were able to further reduce the best, two-class error rate from
0.50% to 0.42% with a voted ensemble of 9 neural networks. At a
false positive rate of 0.01%, the best single neural network yields
a false negative rate of 25% approaching the goals outlined in the
introduction.

Instead of using random projections, we also tried principal
component analysis (PCA) to reduce the dimensionality of the input
vector. The challenge with PCA is first computing the singular
value decomposition (SVD) on the data’s covariance matrix in order
to determine the largest eigenvectors. With our dataset, we were
only able to run a randomized PCA algorithm that estimated the
first 500 principal components due to the O(N3) computational re-
quirements of exact PCA. The resulting two-class error rate for this
system was 0.75% for a one-layer neural network with 768 hidden
units which is significantly worse than the comparable architectures
utilizing 4000 random projections.

Figure 3 plots the two-class error rate of logistic regression for
different random projection sizes. As more dimensions get used, the
classifier has more learned weights and more information about the
input and performance improves. However, there are diminishing
returns and error starts to level off around 8000 dimensions. The
results from Figure 3 justify our decision not to try more than 8000
random projection dimensions in our neural net experiments. In-
creasing the number of random projection dimensions increases the
capacity of the model by giving it more tunable parameters and also
provides more information about the data. These two effects are
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Fig. 4. Error Rates for Neural Network with Different Random Pro-
jection Sizes.

tightly coupled for logistic regression compared to neural nets with
variable numbers of hidden units so we expect the optimal number
of random projection dimensions for a neural net to be at most the
number that was optimal for logistic regression. Indeed the results
in Figure 4 show 4000 random projection dimensions to be slightly
better than 8000 for the neural net models we tried.

We found that our results were relatively insensitive to the num-
ber of hidden units in the hidden layer of the neural networks. As
long as the hidden layer was sufficiently large, we were able to
achieve very good results. The best neural net took about 3 hours
to train on the full 2.6 million case training set.

4. RELATED WORK

Given the potential risks associated with an infection, malware clas-
sification has been a very active research area. A recent summary
of this research is compiled by Idika and Mathur [1]. Several au-
thors have used neural networks for static malware classification [9,
10, 11]. In addition to using different features, these earlier efforts
did not use random projections as an initial dimensionality reduction
stage. More recently, several authors [6, 7] have been using dynamic
analysis to detect malware by analyzing the behavior of unknown ex-
ecutables running in a virtual machine. Similar to the API tri-gram
features used in this work, Mehdi et al. [12] used N-grams of sys-
tem calls for malware classification. Using an ensemble of malware
classifiers has been proposed by Menahem et al. [13].
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Fig. 5. Error Rates for Neural Networks with Number of Hidden
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Very sparse random projections which are used in Section 2 are
discussed in [4, 5]. Artificial neural networks became a popular clas-
sifier in the late 1980’s after the invention of the backpropagation al-
gorithm [14]. However, due to limits in computational power at that
time and the difficulty of training deep networks, researchers used
mostly narrow and shallow networks. In 2006, Hinton et al. [15]
proposed a technique to initialize a deep network layer-by-layer by
treating each pair of layers as a restricted Boltzmann machine, lever-
aging unlabeled data to regularize the neural network and to help
learn features. This technique, aided by the modern computing fa-
cilities, sparked a resurgence of interest in applying deeper and wider
networks to solve real world problems, even without pre-training. A
notable example is the successful application of the deep neural net-
works in large vocabulary speech recognition [16], with one third of
the error cut from the conventional systems [17].

5. CONCLUSION

In this paper, we present a novel, large-scale malware classification
system which utilizes random projections to reduce the input space
by a factor of 45 (179K/4K) allowing training of more complex su-
pervised classification algorithms. Neural networks trained on ran-
dom projections provide a 43% reduction in the error rate compared
to the baseline logistic regression system using all the features. We
believe the 0.49% two-class error rate for the one-layer neural net-
work with random projections and 0.42% two class error rate for the
ensemble of neural networks offer state-of-the-art performance. Uti-
lizing a GPU for training with 2.6 million examples is fast requiring
slightly less than three hours. Neural networks are not dramatically
slower than logistic regression at test time.

We are not able to obtain a significant accuracy gain by adding
additional hidden layers. The data is almost linearly separable
(0.86% two-class error for logistic regression) in the original input
space. The two and three, hidden layer models perform slightly
worse compared to the one-layer neural network. We believe the
reason for the degraded performance is that there are not enough
errors to learn additional layers well. In our system, we only have
5000 training errors out of 2.6 million training cases for the one-
layer neural network. The system also did not benefit by employing
pre-training which is often used in deep neural network architec-
tures.
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